Optimal Evaluation of Finite Element Matrices
نویسندگان
چکیده
Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising.
منابع مشابه
A GUIDED TABU SEARCH FOR PROFILE OPTIMIZATION OF FINITE ELEMENT MODELS
In this paper a Guided Tabu Search (GTS) is utilized for optimal nodal ordering of finite element models (FEMs) leading to small profile for the stiffness matrices of the models. The search strategy is accelerated and a graph-theoretical approach is used as guidance. The method is evaluated by minimization of graph matrices pattern equivalent to stiffness matrices of finite element models. Comp...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کاملNonlinear inelastic static analysis of plane frames with numerically generated tangent stiffness matrices
For the nonlinear analysis of structures using the well known Newton-Raphson Method, the tangent stiffness matrices of the elements must be constructed in each iteration. Due to the high expense required to find the exact tangent stiffness matrices, researchers have developed novel innovations into the Newton-Raphson method to reduce the cost and time required by the analysis. In this paper, a ...
متن کاملFree Vibration Analysis of a Sloping-frame: Closed-form Solution versus Finite Element Solution and Modification of the Characteristic Matrices (TECHNICAL NOTE)
This article deals with the free vibration analysis and determination of the seismic parameters of a sloping-frame which consists of three members; a horizontal, a vertical, and an inclined member. The both ends of the frame are clamped, and the members are rigidly connected at joint points. The individual members of the frame are assumed to be governed by the transverse vibration theory of an ...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کامل